Soil amendment application, after road construction alters resource availability and can benefit native over non-native species

Lindsay Ringer

Graduate Degree Program in Ecology, Colorado State University

Cynthia S. Brown

Bioagricultural Sciences and Pest Management, Graduate Degree Program in Ecology, Colorado State University

Vic Claassen

University of California, Department of Land, Air, and Water Resources

Meagan Schipanski

Department of Soil and Crop Sciences, GDPE, Colorado State University

changes due to disturbance

Sources of Nitrogen Emitted Pollutants particles/a SO SO₂ NO₂ NH₃ NO3 Wet Deposition NH₄ **Dry Deposition**

http://www.apis.ac.uk/starters-guide-air-pollution-and-pollution-sources http://www.waikatoregion.govt.nz/Environment/Natural-resources/Air/Air-quality/Motor-vehicles

Livestock

Motor vehicles

(combustion)

Power stations

(combustion)

Can seeded native species be favored over non-natives with soil amendments that:

Hypotheses

Brownies: Magda Garbowski, Chris Davis, Amanda West, Peder Engelstad

Lab Assistants: Jeanine Nesky, Nicholas Monzingo

<u>Collaborators</u>: Erin Durant, Rachel Rubin, Chris Davis, Jim Cheatham, Jim Bromberg, Robin Gregory, Christine Taliga (Denver Service Center), Hanem Aboulezz, Paul McLaughlin

<u>Volunteers</u>: Katherine Lease, Graham Tuttle, Eric Knutson, Magda Garbowski, Erika Foster, Robert Condon, Ava Hoffman, Clif McGee, Liana Vitousek

Polymer/Compost Application Hydro-seeding

Seeded species

All perennial, forbs and grasses collected in RMNP and reproduced by the Upper Colorado Environmental Plant Center (Meeker, CO)

Species	Common Name	Percentage	Habit
Antennaria spp.	Pussytoes	1.0	Perennial forb
Artemisia frigida	Fringed sagebrush	6.0	Perennial subshrub
Bouteloua gracillis	Blue grama	6.25	C4 grass
Elymus canadensis	Canada wildrye	22.5	C3 grass
Elymus elymoides	Bottlebrush squirreltail	22.5	C3 grass
Koeleria macrantha	Junegrass	14.0	C3 grass
Muhlenbergia montana	Mountain muhly	14.6	C4 grass
Heterotheca villosa	Harry golden aster	1.5	Perennial forb
Oxytropis lambertii	Purple locoweed	10.8	Perennial forb
Thermopsis divaricarpa	Foothill golden banner	0.08	Perennial forb

Methods – Response Variables

Soil Moisture

- Mid-growing season (7/26)
- Late-growing season (9/9)

Plant Available N

- Mid-growing season (6/23-7/23)
- Late-growing season (8/13-9/19)

Rainfall, Soil Temperature

Methods – Response Variables

Plant Density (7/28-8/5)

- Native, seeded
- Native, not seeded
- Non-Native

- Native
- Non-Native

How do these amendments alter loss of soil moisture over time?

Plant-Available Nitrogen

Soil Carbon: Nitrogen

Mulch+ Compost, Compost:

increase soil N, decrease C:N

Seeded Native Species

Unseeded Native Species

Polymer

Plant Diversity by Soil Treatment

	Treatment	(per m ²)
yue	mulch	0.948
September 1		
-	polymer/compost	0.914
3		
,	mulch/compost	0.942
	control	0.941
1	compost	0.922
1		
	polymer	0.943

Plant Species Diversity

Preliminary Findings

- 1) **Soil moisture** greatest in mulch + compost
- 2) **Soil nitrogen** in compost > mulch + polymer
- 3) **Seeded native density** in mulch, mulch + compost > control
- 4) **Unseeded native density** in polymer > mulch
- 5) No difference in **non-native density** between treatments

Soil amendments <u>do change water and</u>
<u>nitrogen availability</u> and as a result can
increase establishment of
desirable species on roadsides.

Polymer

Preliminary Conclusions

Bochet, E., P. Garcia-Fayos, B. Alborch, and J. Tormo. 2007. "Soil water availability effects on seed germination account for species segregation in semiarid roadslopes." Plant and Soil no. 295 (1-2):179-191. doi: 10.1007/s11104-007-9274-9.

Bromberg, J., S. Kumar, C. Brown, and T. Stohlgren. 2011. "Distributional Changes and Range Predictions of Downy Brome in Rocky Mountain National Park". Invasive Plant Science and Management no. 4(2):173-182.

Campbell, B.D. And J.P. Grime. 1989. "A Comparative Study of Plant Responsiveness to the Duration of Episodes of Mineral Enrichment" New Phytologist 112(2):261-267.

Claassen, V. 2012. "Topsoil Management Plan: Bear Lake Road Phase II" Rocky Mountain National Park, Resource Stewardship. Unpublished.

Curtis, M. J., and V. P. Claassen. 2005. "Compost incorporation increases plant available water in a drastically disturbed serpentine soil." Soil Science no. 170 (12):939-953. doi: 10.1097/01.ss.0000187352.16740.8e.

Curtis, M. J., and V. P. Claassen. 2009. "Regenerating Topsoil Functionality in Four Drastically Disturbed Soil Types by Compost Incorporation." Restoration Ecology no. 17 (1):24-32. doi: 10.1111/j.1526-100X.2007.00329.x.

Curtis, M. J., M. E. Grismer, and V. P. Claassen. 2007. "Effect of compost incorporation on infiltration capacity and erosion from a decomposed granite road cut." Journal of Soil and Water Conservation no. 62 (5):338-344.

Eldrige, J.D., E.F. Redente and M. Paschke. 2012. "The Use of Seedbed Modifications and Wood Chips to Accelerate Restoration of Well Pad Sites in Western Colorado, USA" Restoration Ecology 20.4:524-531.

Esser, Scott and Lonnie Pilkington. 2011"Vegetation Restoration Plan: Bear Lake Road Phase II Reconstruction Project Rocky Mountain National Park." doi:2.1.11

Hooper, D. U. and P.M. Vitousek. 1998. "Effects of Plant Composition and Diversity on Nutrient Cycling" Ecological Monographs 68(1):121-149.

Vasquez, E., R. Sheley, and T. Svejcar. 2008. "Creating Invasion Resistant Soils via Nitrogen Management." Invasive Plant Science and Management no. 1 (3):304-314. doi: 10.1614/ipsm-07-059.1.

Wildlands, Inc. 2013. "Bear Lake Road Phase 2 Hydro-seeding: Rocky Mountain National Park, Colorado." 1.17.2013. Yost, Bob. 2013. "Compost Technical Data Sheet: ECOGROW, A1 Organics" 7.4.2013.

Literature Cited.

No difference in Native Cover among soil treatments.

Rainfall: Summer 2014

Some variation among sites in rainfall amounts.

Next Steps

1) Collect 2015 field data

ø soil moisture, temperature, nutrients, plant growth

2) Summarize results by functional groups

ø annual grasses, perennial grasses, annual forbs, perennial forbs

3) WP4 Soil dry-down study

How are amendments affecting water potential and water availability as soils dry out over time?

4) Write it up!!